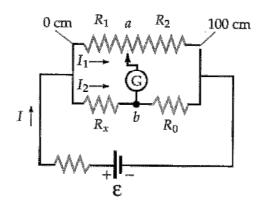
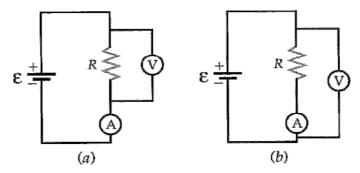
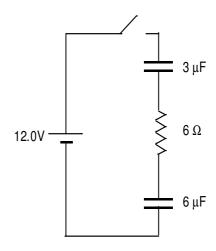

Eletromagnetismo F102 2013-2014 TP #8


- 1. Considere o circuito elétrico representado na figura.
- (a) Determine a diferença de potencial e a intensidade de corrente entre a e b.
- (b) Determine a intensidade de corrente e a potência debitada por cada uma das fontes de tensão.

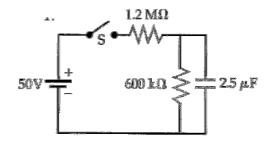
2. Considere o circuito elétrico da figura. Determine a intensidade de corrente elétrica em cada um dos ramos do circuito.

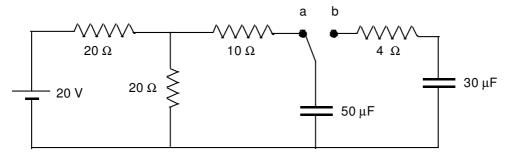


3. O circuito representado na figura é uma ponte de Wheatstone de cursor móvel usada para medir a resistência R_x . O cursor define as resistências $R_{1,2}$ entre o ponto de contacto e os extremos de um fio condutor com $100.0\,cm$ de comprimento total. A ponte está equilibrada quando $R_0=200\Omega$ e o ponto a está a 60.0cm do extremo inicial. Determine o valor de R_x e a incerteza do seu valor que resulta de uma incerteza na posição do cursor de 1mm.



- 4. A figura mostra duas montagens de amperímetro e voltímetro usadas para medir a resistência
- R. A fonte de tensão tem resistência interna desprezável, e verifica-se $R_V=10^4R_A$. Estima-se o


valor da resistência calculando $R_c = V/I$, em que V, I são os valores medidos pelo voltímetro e pelo amperímetro, respetivamente.


- (a) Mostre que, para o circuito a, se verifica $1/R_c = 1/R + 1/R_V$. Mostre que, para o circuito b, se verifica $R_c = R + R_A$.
- (b) Sendo $\varepsilon = 1.5V$, $R_A = 0.01\Omega$, $R_V = 10.0k\Omega$, determine, para cada montagem, o intervalo de valores de R tal que R_c apresenta um desvio máximo de 5%.
- 5. Considere o circuito elétrico esquematizado na figura. Os condensadores estão inicialmente descarregados. No instante t = 0, fecha-se o circuito. Calcule:
- (a) A intensidade de corrente i(t) que circula no circuito, para $t \ge 0$.
- (b) A carga total que ficou armazenada nos dois condensadores, para *t* muito superior à constante de tempo do circuito. Determine a correspondente energia armazenada no conjunto dos dois condensadores
- (c) A diferença de potencial entre os terminais do condensador de capacidade $3\mu F$, no instante t correspondente à constante de tempo do circuito.
- (d) Calcule a energia dissipada no processo de carga dos condensadores, e a energia total fornecida pela fonte.

- 6. Considere o circuito da figura. O comutador S é fechado no instante t = 0.
- (a) Determine a intensidade de corrente através do condensador no instante $t = 0^+$.
- (b) Após carga completa do condensador, o comutador S é aberto. Determine a dependência temporal da intensidade de corrente na resistência de $600k\Omega$.

7. Considere o circuito esquematizado na figura.

Todos os condensadores encontram-se inicialmente descarregados. No instante t=0, liga-se o interruptor na posição a. Passados 0.1s, o interruptor é ligado na posição b. Calcule:

- (a) A carga acumulada no condensador de $50\mu F$ no final do intervalo de tempo em que o comutador esteve ligado na posição a (instante t=0.1s).
- (b) A energia dissipada na resistência de 10Ω , durante o intervalo de tempo em que o interruptor esteve ligado na posição a.
- (c) A intensidade de corrente i(t) que percorre a resistência de 4Ω , após o interruptor passar para a posição b.
- (d) A carga acumulada em cada condensador depois de o interruptor ter passado para a posição *b*, e após atingir-se o estado estacionário.