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Abstract

This experience consisted in using x-ray diffraction with a Rigaku SmartLab Diffractometer on
NaCl and W (powder and foil form), to determine this materials lattice constants and preferred
orientations (when possible), using data analysis software OriginPro2017 and Excel. In this report
the physical principles of relevance are explained, followed by the review of the system. The
needed setup and preparations for the diffraction on the samples is also demonstrated. Later, the
data collected is analyzed and discussed.
For the NaCl sample we were able to determine the lattice constant with a relative error from the
tabulated value of 0.00975%, as for the W sample the preferred orientation was determined to
be the (200) one and the relative errors of the lattice constants were 0.011% and 0.00126% for the
powder and foil form, respectively.
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I. Introduction

Materials are made of atoms. Knowledge of
how atoms are arranged into crystal struc-
tures and microstructures is the foundation
on which we build our understanding of the
synthesis, structure and properties of materi-
als. There are various techniques available to
obtain this types of information about a sam-
ple, one of those is X-ray Diffraction which
is considered to be one of the most accurate
technique to date. In fact, most of the knowl-
edge about the spatial arrangements of atoms
in materials has been gained from diffraction
experiments.

II. Theoretical description and

considerations

i. Production of X-Rays[4]

Laboratory X-ray sources can be classified into
two types: sealed-tube and rotating anode.
Both may be used to generate monochromatic
X-ray radiation and they basically differ only
in the intensity of the radiation produced.

X-rays are generated when matter is irradi-
ated by a beam of high-energy charged parti-
cles such as electrons. In the laboratory, a fila-
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ment is heated to produce electrons which are
then accelerated in vacuum by a high electric
field in the range 20-60 kV towards a metal
target, which being positive is called the an-
ode.

When the energy of the accelerated elec-
trons is higher than a certain threshold value
(which depends on the metal anode), a second
type of spectrum is obtained superimposed
on top of the white radiation. It is called the
characteristic radiation and is composed of
discrete peaks. The energy (and wavelength)
of the peaks depends solely on the metal used
for the target and is due to the ejection of an
electron from one of the inner electron shells
of the metal atom. This results in an elec-
tron from a higher atomic level dropping to
the vacant level with the emission of an X-
ray photon characterized by the difference in
energy between the two levels.

The characteristic lines in this type of spec-
trum are called K, L, M,... and they corre-
spond to transitions to orbitals with principal
quantum numbers 1, 2, 3,... When the two
orbitals involved in the transition are adjacent
(e.g. 2→1), the line is called α. When the two
orbitals are separated by another shell (e.g. 3
→ 1), the line is called β. Since the transition
for β is bigger than for α, i.e. 4Eβ > 4Eα
then λβ < λα.

For the copper X-Ray spectrum at high
resolution the α radiation is seen as a dou-
blet, which is labeled as Kα1 and Kα2 where
∆Eα1 > ∆Eα2. This doublets are better ob-
served at higher diffraction angles due to the
fact of both having the same wavelenght.

ii. Diffraction of X-rays

Crystalline solids consist of regular arrays
of atoms, ions or molecules with interatomic
spacing on the order of 100pm to 1Å. When
an incident X-ray reaches the surface of a ma-
terial, if it has an wavelength comparable to
the inter-atomic spacing, it will suffer scatter-
ing. This scattering is the result of the colli-
sion of the X-ray wave with an atom on the
crystal structure which changes the wave tra-
jectory conserving it’s momentum due to the
fact that the collision is elastic.

From this phenomena the diffraction of X-
rays is produced and a diffraction pattern is

originated from the constructive and destruc-
tive interference of the scattered waves. In a
X-ray diffractometer machine, this pattern is
shown as a function of intensity of number
of photons scattered and the incident angle,
when constructive interference is achieved it
will originate a peak in the intensity otherwise
the intensity will be near zero for destructive
interference.

When a collimated beam of X-rays strikes a
pair of parallel lattice planes in a crystal, each
atom acts as a scattering center and emits a
secondary wave as seen in Figure 1:

Figure 1: Scattering of incident X-ray beam

However the peaks in the intensity of scat-
tered radiation will occur when rays from
successive planes interfere constructively, to
achieve this condition the Bragg’s Law must
be satisfied:

nλ = 2dhklsinθ (1)

This law relates the incident ray wavelength
with the spacing of parallel atomic planes and
the incident angle. The n variable is the order
of diffraction, in X-ray diffraction experiments
it’s common to set n=1.

The various peaks observed in a diffrac-
tion pattern from a material correspond to
different interplanar spacing. For cubic crys-
tal systems, which are our case of interest
in this report, with lattice parameter a0, the
interplanar spacing is given by:

dhkl =
a0√

h2 + k2 + l2
(2)

Where (hkl) represents the Miller indices
of the material. Relating this equation with
Bragg’s law we see that incident angle for
which intensity peaks occur is dependent on
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the Miller indices, which we’ll soon see de-
pend on the sample’s crystal structure. Addi-
tionally the plane normal [hkl] must be paral-
lel to the diffraction vector to produce a peak.

iii. Material structure influence on
diffraction

A given material can be classified in terms
of it’s crystalline structure system, being the
cubic one the most simple and most common
found in crystals. This crystal system is char-
acterized by having a unit cell with the shape
of a cube. The cubic crystal system can be
divided in three main varieties:

• Primitive cubic
• Body-centered cubic (BCC)
• Face-centered cubic (FCC)

For each of this systems there are specific
allowed Miller indices. The most basic re-
striction on this indices is the fact that there
will be some set of them for which the sum
h2 + k2 + l2 gives no possible integral value,
for example the numbers 7, 15, 23, etc. In
the Primitive cubic, all are allowed with the
exception of the previously discussed condi-
tion. For the two other systems the case is
different, and there will be various forbidden
indices. This difference arises because of the
centering nature of this structures, leading to
destructive interference for some reflections
which are called systematic absences.

The allowed indices are able to be obtained
trough the structure factor which determines
the amplitude and phase of the diffracted
beams:

Fhkl =
N

∑
j=1

f je
[−2πi(hxj+kyj+lzj)] (3)

Where the sum is over all atoms in the unit
cell and depends on the positional coordinates
of each atom in real space and it’s correspon-
dent point in reciprocal space (hkl) and the
scattering factor.

Because of the following relation: Ihkl ∝
|Fhkl |2, the diffraction peak intensity is deter-
mined by the arrangement of atoms in the
entire crystal. So the allowed Miller indices
for a given structure are the ones which sat-
isfy the condition that the structure factor is
different of zero.

III. Rigaku Smartlab machine

The Rigaku Smartlab X-Ray Diffraction ma-
chine uses a standard Copper anode sealed
tube source with Tungsten filament and is
capable of using Bragg-Brentano or Parallel
Beam geometries for the measurements.

Figure 2: Rigaku Smartlab X-Ray Diffraction machine

IV. Sample preparation and

machine/software setup

In this section we followed the steps explained
on the document provided by the teacher, as
such only the essential points of the X-ray
diffractometer setup will be discussed in or-
der to maintain this report concise.

i. NaCl sample

Preparation of sample:

The NaCl used was coarse kitchen salt which
was then grounded with a mortar until a
fine powder was obtained. After that an alu-
minum sample holder was filled with the sam-
ple powder using a glass cover-slip to homog-
enize the surface of the powder.1

This preparations were done after ensuring
the machine was working as expected.

1In this case we need not fear of inducing a direc-
tion on the sample surface, because NaCl has a FCC
crystalline structure and is highly symmetric.
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Machine loading and software setup:

After having the sample holder loaded, we
opened the door of the Rigaku machine and
inserted it on the machine’s sample plate, tak-
ing extra care to not spill the powder and
assuring the sample was well centered on the
plate.

Following the instructions of the provided
document, we inserted the IL-slit of size
10mm. Then on the machine’s software we
proceed to choose our measurement pack-
age: General (Bragg-Brentano focusing) D/teX
and perform the sample alignment using the
curved sample (Z-scan only). Having properly
aligned the sample the Kβ filter was inserted
again on the machine, it’s very important this
filter isn’t placed in it’s slit during the Z-scan
to avoid getting a bad sample plate position
during measurement.

On the Rigaku software we choose our mea-
surements parameters in accordance to those
defined in the protocol given for this experi-
ence and then started the measurement.

ii. W

Preparation of sample (Powder/Foil):

Due to the little amount of Tungsten pow-
der available we had to use a Silicon sample
holder with a cavity in it’s center. This type
of sample holder is made by cutting the sil-
icon crystal in such a way that the planes
within the crystal never fulfill the Bragg con-
dition, and they’re commonly called Low-
Background sample holder because of this
characteristic. The big advantage of using sili-
con crystals in this way is that the background
scatter from the mount itself is close to zero
as seen in ii.2 and ii.3.

The Tungsten foil was placed on top of the
sample holder, this gives a worse Z-curve pro-
ducing systematic errors from the possible
misplacement of the sample plate position.

Machine loading and software setup:

After loading the sample into the machine,
the steps were similar to those described in i ,
only changing the parameters in the software
for those specified in the given protocol.

V. Results and Analysis

The data from the software was given in raw
format and converted to xls (Excel) using
the software “PowDLL Converter”. The wave-
length of the Cu X-rays used is 1.5406 Å.

i. NaCl (Powder)

i.1 Theoretic Calculations

To understand the data, we first looked upon
important parameters of this sample and per-
formed some theoretical calculations:

• Lattice constant: 5.6402 Å [1]
• Crystal Lattice type: Face-Centered-

Cubic (FCC)

Using 3 the structure factor for the NaCl was
calculated and the allowed Miller indices ex-
tracted:

Fhkl =
[
1 + (−1)h+k + (−1)k+l + (−1)h+l

] [
fNa + (−1)h fCl

]
(4)

With this information and with the use of
equations 1, 2 and 4 a table VI was made in
Excel containing the theoretic values for the
diffraction angles, the inter-planar distance
dhkl and it’s inverse squared, the allowed
Miller indices for this sample and the sum
of the square of each indices. The last column
was added after analyzing the experimental
data.2

i.2 Data analysis

After the measurement it’s possible to see, in
Figure 1, the location and shape of the region
of the incident X-rays, which ionize the salt
and give this particular color.

2All tables in this report are found in the Appendix,
due to the fact of being to large to fit in a two column
document.
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Figure 3: Ionizing effect of X-rays in NaCl sample

Using OriginPro2017 we plotted the data
from our measurement and also the theoret-
ical position of the peaks from equation 1 to
ease our analysis:

Figure 4: NaCl Experimental Data with theoretical cal-
culated Bragg reflections

From analyzing Figure 4 graph it’s possible
to extract various relevant information. First
we note that some of the theoretical calcu-
lated peaks don’t appear in the experimen-
tal data, this is due to the fact that some of
the crystallites are not properly oriented to
diffract the X-ray beams. Also from Figure
4 we see that the most intense experimental
peak corresponds to the second allowed Miller
indices, the (200) plane, and not the first ones,
this was expected from the structure factor
for this sample, where in the (111) case we

have 4( fNa − fCl) and for the (200) we have
4( fNa + fCl) .

Then we used data analysis from OriginPro
2017 software to look for the approximate lo-
cation of all the peaks and then for each peak
we searched the data in an interval where the
peak maximum was contained and extracted
the most higher value. Having now obtained
the 2θ(degrees) position for each experimen-
tal peak, we used equation 2 to determine the
corresponding interplanar spacing.

To obtain the Miller indices we used the
following procedure:

Miller Indices calculation:

Taking equation 2, and re-arranging it to give:
1

d2
hkl

= 1
a2

0
× (h2 + k2 + l2). We see that all

the inverse squared interplanar spacing of the
peaks will have a common factor, which is the
inverse square of the lattice constant. So if we
find the second term of the right side of this
equation for the first peak we know our first
Miller indices.

So the procedure is as follows:

1. Find the integer which multiplied by 1
a2

0

gives 1
d2

hkl
of the first peak, obtaining then

the Miller indices of this peak;

2. Set Z = 1
d2

1×n1
, where d1 is the interplanar

distance and n1 are the squared sum of
the Miller indices of the first peak;

3. Do
1

d2
2

Z = n2
n1
× n1 = n2

4. Repeat for the following peaks

With all this information gathered it was pos-
sible to build a table VI containing all the
experimental peaks with the corresponding
incident angles, interplanar distance and it’s
relative error, the Miller indices, lattice con-
stant and it’s relative error and finally the
ordering of the peaks intensity. It was also
possible to observe two peaks of the second
order which are identified on the table.

Looking with more attention to the graphic
of Figure 4 we notice that the peaks corre-
sponding to higher diffraction angles have a
distinct adjacent peak which is also a little
shorter. This was expected from the theory
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discussed in i. Even though we filter the Kβ
radiation, the Rigaku machine dos note filter
Kα radiation, and as such instead of only hav-
ing the desired Kα1 X-rays beams colliding
with the sample we have also the Kα2 ones.
In Figure 5 we can observe (zoomed) the ex-
pected effects of this radiation, comparing it’s
intensities and angle displacement for low
diffraction angles and high ones:

Figure 5: Comparison of low and high diffraction an-
gles

Having analyzed all this information the
only thing left was to obtain a final experi-
mental value for the lattice parameter. For
this sample we have calculated six different
values, but which do we choose ? Next we
explain how we reached the final value for
this sample lattice parameter:

Lattice Parameter Extrapolation:

With a powder diffractometer it is possible
to measure lattice parameters to an accuracy
of better than 1 part in 10,000. This accuracy
cannot be achieved, however, by simply ap-
plying Bragg’s law to one peak in a diffraction
pattern, owing to several practical problems.
The most serious is that the center of diffrac-
tion is not located precisely at the center of
the goniometer. This is caused by inaccurate
sample positioning, irregularities of the speci-
men surface, and, more subtly, by variations
in the x-ray penetration depth for different
materials.

As such by differentiating the errors asso-
ciated with sample bad position within the
plate, angle and interplanar distance we reach
a linear expression for the Bragg-Brentano
geometry for our lattice parameter error3:

a = a0 + a0K
′
(

cos2θ

sinθ

)
(5)

where K
′
= 4y/ (Rsin w) is a constant, θ

is the experimental value of the diffraction
angles, a0 is the true estimation of the lattice
parameter and a is the apparent lattice param-
eter calculated from the angular position of a
particular (hkl) diffraction peak.

Equation 5 implies that the actual lattice
parameter a0 is obtained by plotting each ex-
perimental calculated a value with respect to(

cos2θ
sinθ

)
, extrapolating it to

(
cos2θ
sinθ

)
= 0.

As such, using OriginPro 2017 to plot this
values and then performing a linear fit using
a least-squares fitting algorithm we get the
following graph:

3For more information about this equation see [2]
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Figure 6: NaCl Lattice Parameter Extrapolation

and a linear relationship was obtained be-
tween a0 and x:

a = 5.64075 + (7.55397E− 4)x (6)

Obtaining than a value of the lattice param-
eter for the NaCl with a resolution within 1

10
of a picometer:

a0 = (5.64075± 0.00136)Å (7)

Giving a relative error compared to the tab-
ulated value of 0.00975%.

ii. W

ii.1 Theoretic Calculations (Powder)

Tabulated parameters:

• Lattice constant: 3.1652 Å [3]
• Crystal Lattice type: Body-Centered-

Cubic (BCC)

Using 3 the structure factor for Tungsten is
given by:

Fhkl =
[
1 + (−1)h+k+l

]
[ fW ] (8)

Similar to i.1, a theoretical table was also
made VI.

ii.2 Data analysis (Powder)

Plotting the graph for this sample we no-
tice right away the influence that the Low-
Background sample holder has, removing all
background noise associated with the mate-
rial it’s made by:

Figure 7: W(Powder) Experimental Data with theoreti-
cal calculated Bragg reflections

We also constructed a table VI with the ex-
perimental values analogous to the one from
the NaCl sample.

The extrapolated lattice parameter was ob-
tained as explained in i.2 :

a0 = (3.16485± 2.13628E− 4)Å (9)

With a relative error of 0.011%.

ii.3 Data analysis (Foil)

For this form of Tungsten, the intensity peaks
have much higher values:

Figure 8: W(Foil) Experimental Data with theoretical
calculated Bragg reflections

this was expected because this state is
anisotropic and as such the direction of the
crystal planes is being privileged, contrary
from at is happening at ii.2, where the sample
is isotropic meaning that all the planes have
equally probability of reflecting the X-rays.
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For a better analysis of the two states of W,
the following graph was made:

Figure 9: W state’s comparison

Where we see the difference in the intensi-
ties and note that both states have the same
number of peaks due to the fact of W being a
monocrystal and it’s structure is cubic.

It’s easy to notice also that the preferred
orientation of the Tungsten foil is the (200)
plane.

The extrapolated lattice parameter of the W
foil is:

a0 = (3.16524± 8.97407E− 4)Å (10)

With a relative error of 0.00126%. A much
lesser error than the powder form, giving us
a precision on order bellow of the fentometer
scale.

VI. Conclusion

With this experiment, using a Rigaku Smart-
Lab X-ray Diffractometer, we were able to
study the crystal structure of two different
materials, obtaining the lattice constant’s with
very high precision. It was also possible to
study the effects of anisotropy on a Tungsten
sample. The value of the calculated experi-
mental lattice constant could be improved by
using the Rietveld method[5].

This experiment shows that X-Ray Diffrac-
tion is a powerful tool to analyse various types
of substance.
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Appendix

Theoretical tables:

Table 1: NaCl

Table 2: W (Powder)

Table 3: W(Foil)

Experimental tables:

Table 4: NaCl

Table 5: W (Powder)

Table 6: W (Foil)
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