Caracterização de Fibras Óticas com OTDR

André Maia (up201405379)

Novembro de 2017

Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal

Resumo

Neste trabalho pretende-se estudar a potência refletida numa fibra ótica recorrendo a um OTDR (*Optical Time Domain Reflectrometer*). Começa-se por uma breve descrição do funcionamento do OTDR e como se pode interpretar a informação obtida pelo mesmo. De seguida, caracteriza-se cada uma das três fibras em estudo; duas fibras ligadas por um conector (FC-PC), três fibras ligadas por conectores (FC-PC, AC-PC) e três fibras ligadas por um conector (FC-PC) e um *splice*. Avalia-se qualitativamente a influência do comprimento das fibras, largura do pulso e comprimento de onda no traço do OTDR.

1 Introdução

1.1 OTDR

Dois elementos básicos de um OTDR são um laser e um detetor ótico. Um pulso de luz com comprimento de onda e largura bem definidos é injetado na fibra e o detetor ótico mede a proporção de luz que é refletida (*backscatter*) à medida que o pulso se propaga ao longo da fibra. O OTDR regista a amplitude da luz refletida e o tempo que passou desde a emissão do pulso até à deteção (*time delay*). Conhecida a velocidade com que a luz se propaga na fibra, o *time delay* é convertido em distância percorrida. Como o OTDR é pré-programado com o índice de refração, é possível exibir a posição de qualquer evento à medida que o pulso se propaga na fibra como regiões de maior ou menor proporção de luz refletida [1].

1.2 Como interpretar a curva do OTDR?

A luz que se propaga ao longo da fibra pode ser refletida por vários motivos como, por exemplo, espalhamento de Rayleigh, variações pontuais do índice de refração, variações do MFD (*Mode Field Diameter*) devidas à geometria do vidro e reflexões de Fresnel por variações abruptas de densidade [1]. A Fig.1 ilustra como esses eventos aparecem no traço do OTDR.

Figura 1: Interpretação de vários eventos no traço do OTDR. [1]

O declive do traço dá o coeficiente de atenuação da fibra. É importante notar que os eventos de reflexão aparecem no traço como picos com atenuação nula ou quase nula onde a altura do pico é um indicador da percentagem de luz refletida. Os conectores devem aparecer como um pico de reflexão mas com atenuação enquanto que um *splice* não deverá refletir, apenas apresentar atenuação. Pode acontecer que a quantidade de luz refletida seja tal que o detetor do OTDR sature, aparecendo o pico com um topo plano [2]. Tipicamente isso acontece nos conectores, permitindo a identificação do início e do fim da fibra.

Quando se caracterizam fibras de pequeno comprimento com conectores de elevada reflexão, é possível que apareçam picos "fantasma" (Fig.2).

Figura 2: Traço do OTDR para uma fibra ótica curta (700m). Para estes comprimentos, podem aparecer picos fantasma. [2]

Estes picos devem-se ao facto da luz refletida no fim da fibra sofrer reflexões sucessivas até ser atenuada para o nível do ruído. É expectável que se encontrem em posições que são múltiplos inteiros do comprimento da fibra.

A largura do pulso é um parâmetro importante. Quando maior a largura, maior a potência do pulso e, portanto, maior a distância de deteção. No entanto, quanto maior for a largura, menor a resolução porque dois eventos separados por uma distância inferior à largura do pulso serão vistos pelo OTDR como um só (Fig.3). Logo, deve haver um compromisso entre resolução e distância de deteção. Deve ter-se em conta que o comprimento da fibra limita a escolha de largura de pulso.

Figura 3: Pulso (a vermelho) percorrendo a fibra. Na situação de cima, ambos os eventos são detetados enquanto que na situação de baixo são vistos como um só.

2 Métodos e Resultados Experimentais

Dispunha-se de três fibras óticas monomodo com as seguintes especificações (Tabela 1):

	Comprimento (Km)	Índice de Refração	Perdas (dB/Km)
Fibra 1	0.5	1.464	0.30
Fibra 2	0.5	1.464	0.50
Fibra 3	0.5	1.464	0.40

Tabela 1: Características das fibras estudadas especificadas pelo fabricante. As perdas indicadas devem ser encaradas como um valor máximo.

Prosseguiu-se para caracterizar cada uma delas individualmente com o OTDR. Utilizou-se um pulso de largura escolhida automaticamente (50 ns para todas as fibras) e, para cada fibra, efetuaram-se medições usando os comprimentos de onda de 1310 nm e 1550 nm. Os resultados estão resumidos na Tabela 2.

	Comprimento medido (Km)		Perdas (dB/Km)	
	1310 nm	1550 nm	1310 nm	1550 nm
Fibra 1	0.47844	0.47844	0.575	0.999
Fibra 2	0.4733	0.47125	0.112	-0.325
Fibra 3	0.4692	0.47125	0.107	-0.709

Tabela 2: Resultados obtidos na caracterização individual de cada fibra.

A Fig.4 retrata o que tipicamente foi visto no OTDR na caracterização individual das fibras anteriores.

Figura 4: Traço do OTDR para a fibra 1 a $1310\,nm$ com largura de pulso de $50\,ns.$

De seguida, ligou-se a fibra 1 à fibra 2 por um conector FC-PC e procedeuse à caracterização do conjunto com um pulso de largura 100 ns em ambos os comprimentos de onda já referidos (Tabela 3).

	Perdas Totais (dB)		Perdas no Conector (dB)	
	1310 nm	1550 nm	1310 nm	1550 nm
Fibra 1+2	1.280	2.417	1.113	2.115
(conector)				

Tabela 3: Resultados da caracterização do conjunto Fibra 1 e Fibra 2 ligadas por um conector. Apresentam-se as perdas totais e as perdas apenas no conector para os dois comprimentos de onda indicados.

Neste caso, é interessante calcular as perdas do conjunto e as perdas devidas apenas ao conector (Fig.5).

Figura 5: Conjunto fibra 1 - conector - fibra 2. As perdas são calculadas na região entre os pontos (1) e (2). (a) Perdas do conjunto. (b) Perdas apenas no conector.

Também se analisou o conjunto das três fibras onde as fibras 1 e 2 estavam ligadas por um conector FC-PC e as fibras 2 e 3 por um conector AC-PC. Depois, mantendo a ligação entre 1 e 2, uniram-se as fibras 2 e 3 por um *splice* e caracterizou-se novamente o conjunto. Em ambos os casos, utilizou-se um pulso de largura 100 ns e o comprimento de onda de 1310 nm. Os resultados encontram-se na tabela seguinte (Tabela 4).

	Perdas Totais (dB)	Perdas no Conector 2-3 (dB)	Perdas no Splice (dB)
Fibra 1+2+3 (conector e splice)	1.629	_	0.416
Fibra 1+2+3 (dois conectores)	5.153	3.107	

Tabela 4: Resultados da caracterização do conjunto de fibras 1,2 e 3 onde as fibras 1 e 2 estavam ligadas por um conector. Apresenta-se o caso em que 2 e 3 também estavam ligadas por um conector e o caso em que estavam ligadas por um *splice*.

Analogamente ao conjunto anterior, para além das perdas totais, calcularamse as perdas na ligação entre as fibras 2 e 3 (Fig.6).

Figura 6: Conjunto de três fibras em que as fibras 2 e 3 estão unidas por um *splice* (a) e por um conector (b).

Para fazer o *splice*, de modo a garantir alguma qualidade, realizaram-se primeiro vários "ensaios". Começou-se por retirar o revestimento da fibra com um alicate e cortar com a máquina de corte. De seguida, limparam-se as extremidades das fibras que se pretendia fundir e só depois, com a máquina de fusão, fez-se o *splice*, i.e., fundiram-se as fibras.

Como as três fibras têm aproximadamente o mesmo comprimento, com a intenção de perceber a influência do comprimento no que se via no OTDR, decidiu-se analisar uma fibra (fibra 4) com 50.600 km de comprimento (Fig.7). O fabricante indica que, para o comprimento de onda de 1550 nm, a atenuação é de 0.186 dB/km.

Figura 7: Caracterização da fibra 4 com um comprimento de onda de 1550 nme um pulso com 1 μs de largura.

Utilizando a fibra 4, obtiveram-se vários traços com larguras de pulso diferentes (Fig.8).

Figura 8: Traço da fibra 4 correspondente a uma largura de pulso de 50 ns (a), 100 ns (b), $1 \mu s$ (c) e $10 \mu s$ (d).

3 Discussão dos Resultados

Para as fibras estudadas individualmente, verifica-se que as perdas variam com o comprimento de onda (Tabela 2). Dado que na altura em que foram fabricadas (década de 1980) o comprimento de onda mais utilizado em telecomunicações era 1310 nm, é de esperar que o seu funcionamento tenha sido otimizado para esse comprimento de onda e, portanto, apresentem uma maior atenuação a 1550 nm. Dada a idade das fibras, seriam de esperar perdas próximas ou até superiores ao valor indicado pelo fabricante (Tabela 1). No entanto, à exceção da fibra 1, obtiveram-se valores inferiores para 1310nm. Mesmo a 1550 nm, a fibra 2 continua com perdas inferiores ao estipulado.

Ao estudar o conjunto das fibras 1 e 2 ligadas por um conector, verificou-se que a maior parte da atenuação é devida à ligação (cerca de 88%, ver Tabela 3). Analogamente, as perdas do conjunto das três fibras unidas por conectores também são maioritariamente devidas às ligações (Tabela 4). Constatou-se também que a atenuação na ligação por conector AC-PC (fibras 2-3) é a maior. No caso em que as fibras 2 e 3 estavam unidas por um *splice*, obteve-se uma atenuação muito inferior comparativamente à ligação por conectores (cerca de sete vezes inferior). Notar que o facto de o *splice* mal se notar no gráfico da Fig. 4 leva a concluir que praticamente não reflete.

O traço da fibra 4 (Fig.7), por esta ter um comprimento muito superior às restantes, já não apresenta picos fantasma. Além disso, pelo mesmo motivo, já se torna evidente o declive do traço devido ao espalhamento de Rayleigh. A atenuação medida é ligeiramente inferior ao estipulado pelo fabricante. Notar que, como esta fibra é recente, deve estar otimizada para 1550 nm.

Observando a Fig.8, vê-se que as larguras de pulso de 100 ns e $1 \mu s$ são boas para caracterizar a fibra 4. No entanto, há demasiado ruído para 50 ns e, para $10 \mu s$, obtém-se um comprimento cerca de 10 km superior ao real (demasiada luz refletida no final da fibra).

4 Conclusões

Verificou-se que as fibras 1, 2 e 3 estão em boas condições tendo em conta o seu ano de fabrico. Conclui-se que as perdas de um conjunto de fibras são maioritariamente devidas às ligações entre as mesmas sendo menores para uma ligação por *splice* em comparação com conectores. Dentro dos conectores, foi o AC-PC que apresentou maiores perdas. Foi possível observar qualitativamente como o comprimento das fibras, a largura do pulso e o comprimento de onda afetam o traço do OTDR.

Referências

- [1] Ellis, R. Explanation of Reflection Features in Optical Fiber as Sometimes Observed in OTDR Measurement Traces. (2007). Corning White Paper.
- [2] http://www.thefoa.org/tech/ref/testing/OTDR/OTDR.html