Estudo do Bi_2Te_3 e do Sb_2Te_3 como materiais termoelétricos através dos efeitos de Hall e de Seebeck

Hugo Veloso¹

¹ Faculdade de Ciências da Universidade do Porto

Realização Experimental:17 de Abril de 2018 Entrega do Relatório: 1 de Maio de 2018

Abstract

Estudamos duas amostras, de Bi_2Te_3 e de Sb_2Te_3 , com o obejtivo de averiguar o material termoelétrico mais viável. Utilizando o método dos quatro contactos, os valores obtidos para a resistividade de ambos os materiais, forma iguais a $\rho_1 = 5, 32 \cdot 10^{-6} \ \Omega \cdot m$ e $\rho_2 = 2, 89 \cdot 10^{-4} \ \Omega \cdot m$. De seguida, através de processos de medida de Hall, os tipos de portadores de carga das amostras, e as suas densidades de superfície e de volume, foram também determinadas, sendo respetivamente $n_s = 2, 00 \cdot 10^{12} \ cm^{-2}$ e $n = 9, 98 \cdot 10^{18} \ cm^{-3}$, e $p_s = 1, 25 \cdot 10^8 \ cm^{-2}$ e $p = 4, 63 \cdot 10^{14} \ cm^{-3}$. A partir destes valores, a mobilidade de Hall revelou-se ser $\mu = 1, 18 \cdot 10^5 \ cm^2 V^{-1} s^{-1}$ para o Bi_2Te_3 e $\mu = 4, 68 \cdot 10^7 \ cm^2 V^{-1} s^{-1}$ para o Sb_2Te_3 . Contudo, as medidas de Hall do Bi_2Te_3 apresentam erros, possivelmente devido ao mau estado da amostra, uma vez que apresentava quebras na sua superfície. Para a segunda parte da atividade, o registo da tensão das amostras em resposta ao gradiente de temperatura foi feito, sendo comprovada a observação do efeito de Seebeck com uma relação linear entre a diferença de temperatura e a tensão. O coeficiente de Seebeck foi calculado em ambas as amostras como sendo o declive da relação, dado os valores $S = 2, 63 \cdot 10^{-5} V^{\circ}C^{-1}$ e $S = 1, 43 \cdot 10^{-5} V^{\circ}C^{-1}$ para Bi_2Te_3 e Sb_2Te_3 , respetivamente.

1 Introdução

Em 1821, a primeira parte do efeito termoelétrico, a consersão de calor em eletricidade, foi descoberta por Thomas Seebeck e estudada em maior detalhe por Jean Peltier. Esta, juntamente com a conversão de eletricidade em calor, descoberta em 1851 por William Thomson, são bases do Efeito Termoelétrico, de onde diversas aplicabilidades se podem encontrar, como aquecedores, frigoríficos, entre outros.

O processo por trás da corrente que percorre o material com um gradiente de temperatura depende do tipo de portadores que este tem: se são portadores de carga positiva, como lacunas (material do tipo p) ou portadores de carga negativa, os eletrões (material do tipo n). O tipo de portadores que predomina pode ser determinado através do conceito do efeito de Hall, este descoberto por Edwin Hall em 1879.

Assimilando o efeito de Hall com o efeito de Seebeck, uma avaliação simples de materiais termoelétricos pode ser realizada, para que se tenha uma pequena noção dos melhores materiais para gerar tensão elétrica através de calor.

1.1 Efeito de Hall

Suponhamos um material onde uma corrente percorre o seu interior numa dada direção, e que existe um campo magnético perpendicular a esta corrente (**figura 1**). A força magnética, exercida pelo campo

Figure 1: Representação do efeito de Hall num material com portadores de carga positiva, (a), e de cargas negativas, (b).

no portador de carga, vai defletir este para uma das laterais do material, havendo assim uma acumulação de carga numa superfície lateral, em relação à outra (figura 1). Contudo, este excesso de portadores num lado em relação ao outro gera um campo elétrico paralelo à direção normal dessas superfícies laterais. A partir deste ponto, os portadores cntrados sofrem ação de uma força de Lorentz, $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$. Eventualmente o excesso de carga vai ser tal que a força de Lorentz aplicada será nula.

Com esta acumulação de carga uma diferença de potencial é observada entre ambas as laterais, sendo esta denominada de **tensão de Hall** Através desta tensão, é possível determinar o tipo de portadores de carga do material.

1.2 Efeito Seebeck

Juntamente com o efeito Peltier e o efeito Thomson, o **efeito Seebeck** faz parte do grupo dos efeitos termoelétricos. Neste efeito, um material entre duas junções, a temperaturas diferentes, é percorrido por uma corrente em resposta ao gradiente de temperatura e, consequentemente, uma força eletromotriz entre as duas extremidades é produzida (**Figura 2**). Estas junções devem ser compostas por materiais diferentes, uma vez que só assim o efeito de Seebeck é observado. Caso fossem iguais, o efeito não seria observado por razões simétricas.

Esta tensão gerada deve-se à difusão eletrões do lado de maior temperatura para o lado de menor temperatura (figura 3). Para um material do tipo p, isto traduz-se nas lacunas a deslocar-se para o lado mais quente.

Caso o material tenha uma condutividade térmica elevada e, consequentemente, baixa resitividade elétrica (lei de Wiedemann-Franz), o equilíbrio térmico será atingido.

Contudo, se o material em questão apresentar uma baixa condutividade térmica e elevada resistividade, a difusão dos portadores é menor e o equilíbrio térmico é de difícil obtenção. Isto permite manter uma tensão entre as extremidades dos materiais, tornando-se assim possível aplicar estes em aplicações práticas.

Para que um material seja um bom material termoelétrico, o seu coeficiente de Seebeck deverá ser elevado e a resistividade elétrica e térmica devem ser

Figure 2: Circuito representativo do efeito Seebeck. Sendo que $T_2 \neq T_1$, uma tensão e corrente percorrem o segmento A.

baixas. Contudo, estes são dependentes entre si, sendo um desafio a melhoria simultânea destes num material termoelétrico.

O efeito de Seebeck pode ser avaliado de acordo com o coeficiente de Seebeck, definido por

$$S = \frac{\Delta V}{\Delta T} = \frac{V_{quente} - V_{frio}}{T_{quente} - T_{frio}}$$

2 Realização Experimental

Estes procedimentos, descritos daqui em diante, foram realizados identicamente a duas amostras, apenas mudando o valor de intensidade de corrente a elas. Estas amostras são o **telureto de bismuto** (Bi_2Te_3) e o **telureto de antimónio** (Sb_2Te_3) , ambos materiais semicondutores e tipicamente utilizados para sistemas de aquecimento ou refrigeração, devido às suas propriedades termoelétricas.

1ª Parte - Efeito de Hall

Primeiramente foi feita as medidas de resistividade do material a campo magnético nulo (B = 0G). Para tal utilizou-se o **método de Van der Pawn**, que usa

o método dos quatro pontos para fazer as medições da tensão de Hall para cada corrente aplicada. Esta corrente aplicada deve ter um valor tal que a potência dissipada na amostra não exceda 5 mW. Tal condição é satisfeita se $I < (200R)^{-0.5}$. Com esta condição, a intensidade de corrente utilizada na amostra de Bi_2Te_3 e de Se_2Te_3 foi de 10 μA e 0,2 μA , respetivamente

As tensões medidas foram V_{12} , V_{23} , V_{34} , V_{41} , V_{21} , V_{14} , V_{43} e V_{32} .

De seguida o sistema de contacto foi colocado entre duas bobinas geradoras de campo magnético. Tevese consideração da distância destas do sistema, de forma a que ficassem igualmente distanciadas mas mais próximas possíveis da amostra, assim se pode usar a aproximação de campo magnético linear a atravessar a amostra. Nesta situação, o fornecimento de corrente e a medição da voltagem foi feito como representado na figura 4. Estas medições foram repetidas após rodar o sistema 180°, fazendo com que a polarização magnética seja oposta em relação às medições anteriores.

Figure 4: Método dos quatro pontos, que se utiliza para realizar o método de Van der Pawn para calcular as medidas de Hall.

Neste caso foram medidas as voltagens V_{24} , V_{42} , V_{13} e V_{31} para polarização positiva e negativa do campo magnético.

2ª Parte - Efeito Seebeck

Utilizando as mesmas amostras que na primeira parte, o objetivo aqui é obter os dados necessários para observar a relação entre a diferença de temperatura entre duas junções, em extremidades opostas da amostra, e a tensão gerada na amostra, deste modo comprovando a ocorrência do efeito de Seebeck.

Uma de cada vez, as amostras foram colocadas entre as duas junções, sendo que estas estão já ligadas a um controlador de temperatura. Para a amostra de Bi_2Te_3 , as medições de tensão foram feitas em intervalos de temperatura de $\Delta T = 0,5^{\circ}C$, desde $T_{inicial} = 20^{\circ}C$ a $T_{final} = 10^{\circ}C$. Para a amostra de Sb_2Te_3 , o intervalo foi idêntico, contudo $T_{inicial} = 10^{\circ}C$ a $T_{final} = 20^{\circ}C$ **Nota:** Um melhor estudo do efeito poderia ser realizado com o registo da tensão para variação ascendente e descendente da temperatura para cada uma das amostras. Porém, devido à falta de tempo disponível, tal não foi possível.

3 Resultados e Análise

3.1 Efeito de Hall

Pretende-se, com estes cálculos, obter os valores para a resistividade, ρ , a densidade superficial (n_s ou p_s) e volúmica (n ou p) de portadores de carga, e a mobilidade de Hall, μ , de cada amostra.

3.1.1 Medida da Resistividade

Para determinar a resistividade das amostras, começase por usar a lei de Ohm para determinar as resistência das amostras numa dada direção de corrente elétrica. Os valores utilizados de intensidade de corrente elétrica e de tensão de resposta obtida estão presentes no Apêndice (figuras 7 e 8).

O cálculo das resistências foi feito da seguinte forma

$$R_{21,34} = \frac{V_{34}}{I_{21}}$$

Sendo análogo para as restantes resistências. Os valores obtidos estão presentes na tabela 1.

	Valor de Resistência (Ω)		
Resistência	Bi_2Te_3	Sb_2Te_3	
$R_{21,34}$	7,04	412,72	
$R_{12,43}$	7,10	415,40	
$R_{32,41}$	5,18	123,06	
$R_{23,14}$	4,57	118,55	
$R_{43,12}$	6,94	393,13	
R _{34,21}	6,70	423,15	
$R_{14,23}$	4,87	116,84	
$R_{41,32}$	5,07	126,10	

Table 1: Valor calculado da resistência das duas amostras utilizadas, Bi_2Te_3 e Sb_2Te_3 , para cada montagem realizada. Todas as correntes fornecidas para cada amostra foram de igual valor de intensidade, sendo estas $I = 1 \times 10^{-5} A e I = 2 \times 10^{-7} A$ para o $Bi_2Te_3 e o Sb_2Te_3$, respetivamente, de modo a satisfazer a condição $I < (200R)^{-0.5}$.

Com estes valores de resistência, define-se os valores R_A e R_B pelas expressões

$$R_A = \frac{1}{4} \cdot (R_{21,34} + R_{12,43} + R_{43,12} + R_{34,21})$$
$$R_B = \frac{1}{4} \cdot (R_{32,41} + R_{23,14} + R_{14,23} + R_{41,32})$$

sendo estas as médias da resistência da amostra para uma dada direção. Os valores destas duas estão presente na tabela 2.

	Amostras		
	Bi_2Te_3 Sb_2Te_3		
$R_A(\Omega)$	6,94	411,10	
R_B (Ω)	4,92	121,14	

Table 2: Valores de R_A e R_B para ambas as amostras.

Usando os valores de R_A e R_B obtidos e a equação

$$e^{\frac{-\pi R_A}{R_S}} + e^{\frac{-\pi R_B}{R_S}} = 1$$

resolve-se esta em relação a R_S , sendo esta a resistência superficial.

Por fim a resistividade pode ser determinada por

$$\rho = R_S d$$

sendo d a espessura das amostras ($d_{Bi_2Te_3} = 200 nm$ e $d_{Sb_2Te_3} = 270 nm$)

Na tabela 3 estão presentes os valores obtidos de R_S e de ρ .

	Amostras			
	Bi_2Te_3 Sb_2Te_3			
R_S (Ω)	26,61	1070,37		
$\rho (\Omega \cdot m)$	$5,32 \cdot 10^{-6}$	$2,89 \cdot 10^{-4}$		

Table 3: Valor calculado de R_S para cada amostra.

Nesta primeira análise de dados observa-se que o Bi_2Te_3 apresenta uma menor resistividade do que o Sb_2Te_3 .

3.1.2 Medida de Hall

A realização das medidas de Hall permitem determinar o tipo de portadores de carga das amostras, da densidade superficial sofre o efeito de Hall, e da densidade volúmica desses portadores na amostra. Para tal começa-se por definir V_C , V_D , V_E e V_F (tabela 12 do Apêndice) como sendo

$$V_C = V_{24P} - V_{24N}$$
$$V_D = V_{42P} - V_{42N}$$
$$V_E = V_{13P} - V_{13N}$$
$$V_F = V_{31P} - V_{31N}$$

Nota: os valores de tensão de Hall obtidos para a amostra de Bi_2Te_3 não são consistentes com o esperado.

É realizada a soma dos valores V_C , V_D , V_E e V_F , que se utiliza para determinar o tipo de portadores de carga. Caso o resultado desta soma seja positiva, os portadores de carga são positivos. Da mesma forma, os portadores de carga são negativos se a soma for negativa.

Segundo o resultado da tabela 12 presente no Apêndice, estes indicam que o Bi_2Te_3 tem portadores

de carga negativa (eletrões), enquanto que o Sb_2Te_3 tem portadores de carga positiva (lacunas).

A expressão da densidade superficial de portadores a utilizar vai depender de se os portadores são de carga positiva ou negativa, sendo estas expressões, respetivamente

$$p_{s} = \frac{8 \times 10^{-8}IB}{q(V_{C} + V_{D} + V_{E} + V_{F})}$$
$$n_{s} = \frac{18 \times 10^{-8}IB}{q(V_{C} + V_{D} + V_{E} + V_{F})}$$

Para terminar, chegamos à densidade volúmica de carga usando novamente a espessura das amostras.

$$n = n_s d$$

$$p = p_s d$$

	Amostra			
	Bi_2Te_3 Sb_2Te_3			
p_s		$1,25\cdot 10^8$		
n_s	$2,00\cdot 10^{12}$			
p		$4,63 \cdot 10^{14}$		
n	$9,98 \cdot 10^{18}$			

Table 4: Densidade superficial (p_s ou n_s) e volúmica (p, n) de portadores de carga.

Por fim, a mobilidade de Hall, a medida da mobilidade de eletrões ou lacunas num semicondutor, é obtida por

$$\mu = \frac{1}{q n_s R_s} \; (c m^2 V^{-1} s^{-1})$$

	Amostras	
	Bi_2Te_3	Sb_2Te_3
$\mu(cm^2V^{-1}s{-}1)$	$1, 18 \cdot 10^{5}$	$4,68\cdot 10^7$

 Table 5: Valor de mobilidade de Hall calculada usando os dados obtidos da atividade.

3.2 Efeito de Seebeck

Os valores obtidos de tensão, para variação de temperatura entre $10^{\circ}C$ e $20^{\circ}C$, com $\Delta T = 0, 5^{\circ}C$, estão presentes em anexo. A relação entre tensão e temperatura, para ambas as amostras utilizadas, pode ser observada na figura 5.

Como a relação entre a tensão e a temperatura é linear, o coeficiente de Seebeck vai corresponder ao valor do declive para cada amostra. Os respetivos valores do coeficiente estão na tabela 6.

Figure 5: Tensão obtida em função da diferença de temperatura entre as duas junções. a) e b) são os valores do ajuste linear dos dados para a amostra de Bi_2Te_3 e Sb_2Te_3 , respetivamente.

	Amostra		
	Bi_2Te_3	Sb_2Te_3	
S	$2,63 \cdot 10^{-5}$	$1,43 \cdot 10^{-5}$	

 Table 6: Coeficiente de Seebeck para ambas as amostras.

4 Conclusão

Neste estudo, tanto o efeito de Hall como o efeito de Seebeck foram observados, sendo que neste último a relação entre a diferença de temperatura aplicada e a tensão registada mostrou-se linear para ambas as amostras. Através das medidas de Hall, os portadores de carga foram identificados, sendo que a amostra de Bi_2Te_3 mostra ser do tipo n, enquanto que a amostra de Sb_2Te_3 é do tipo p. As suas densidades superficiais e volumicas de portadores são, respetivamente, $n_s = 2,00 \cdot 10^{12} \ cm^{-2}$ e $n = 9,98 \cdot 10^{18} \ cm^{-3}$ para Bi_2Te_3 , e $p_s = 1,25 \cdot 10^8 \ cm^{-2}$ e $p = 4,63 \cdot 10^{14} \ cm^{-3}$ para Sb_2Te_3 .

Para a amostra de Bi_2Te_3 obteve-se os valores de resistividade elétrica, mobilidade de Hall e coeficiente de Seebeck igual a $\rho = 5,32 \cdot 10^{-6} \ \Omega \cdot m, \ \mu = 1,18 \cdot 10^5 \ cm^2 V^{-1} s^{-1}$ e $S = 2,63 \cdot 10^{-5} V \cdot ^{\circ} C^{-1}$, respetivamente. Estes mesmos valores na amostra de Sb_2Te_3 mostram ser respetivamente, $\rho = 2,89 \cdot 10^{-4} \ \Omega \cdot m, \ \mu = 4,68 \cdot 10^7 \ cm^2 V^{-1} s^{-1}$ e $S = 1,43 \cdot 10^{-5} V \cdot ^{\circ} C^{-1}$. Podemos entrao concluir que, de entre as duas amostras, o Bi_2Te_3 aparenta ser o melhor material termoelétrico, uma vez que o seu coeficiente de Seebeck mostra-se superior e a sua resistividade elétrica é inferior ao do Sb_2Te_3 , características estas procuradas para um ma-

terial termoelétrico. De notar que, como as medidas de Hall na amostra de Bi_2Te_3 foram realizadas numa amostra com imperfeições, estes valores vêm associados a um erro elevado.

References

- [1] Tipler, P. The Hall Effect. *Physics for Scientists and Engineers, Sixth Edition*
- [2] Resistivity and Hall Measurements: van der Pauw, *fornecido pelo docente*
- [3] Fang Wu, Thermoelectric properties of I-doped n-type Bi2Te3-based material prepared by hydrothermal and subsequent hot pressing.
- [4] https://www.britannica.com/science/ Hall-effect, visitado dia 23/04/2018
- [5] https://www.britannica.com/science/ Seebeck-effect,visitado dia 26/04/2018
- [6] http://hyperphysics.phy-astr.gsu.edu/hbase/ magnetic/Hall.html,visitado dia 26/04/2018
- [7] https://phys.org/news/ 2010-04-thermoelectricity.html,visitado dia 29/04/2018
- [8] https://www3.nd.edu/~sst/teaching/AME60634/ lectures/AME60634_F13_thermoelectric. pdf,visitado dia 29/04/2018
- [9] http://fisica.uc.pt/data/20032004/ apontamentos/apnt_039_1.pdf,visitado dia 29/04/2018
- [10] http://news.mit.edu/2010/ explained-thermoelectricity-0427,visitado dia 01/05/2018

Apêndice

Corrente Fornecida		Tensão Medida	
Entradas	Valor (A)	Entradas	Valor (V)
I12		V43	7,10E-5
I23		V14	4,57E-5
I34	1 OOF F	V21	6,70E-5
I41		V32	5,07E-5
I21	1,001-5	V34	7,04E-5
I14		V23	4,87E-5
I43		V12	6,94E-5
I32		V41	5,18E-5

 Table 7: Valores de tensão detetada, em resposta à intesidade de corrente fornecida, na amostra de Bi_2Te_3 .

Corrente Fornecida		Tensão Medida	
Entradas	Valor (A)	Entradas	Valor (V)
I12		V43	8,31E-5
I23		V14	2,37E-5
I34	2,00E-7	V21	8,46E-5
I41		V32	2,52E-5
I21		V34	8,25E-5
I14		V23	2,34E-5
I43		V12	7,86E-5
I32		V41	2,46E-5

 Table 8: Valores de tensão detetada, em resposta à intesidade de corrente fornecida, na amostra de Sb_2Te_3 .

Teste de Consistência					
1 2					
R21,34-R12,43	5,90E-2	0.83%	$ (\mathbf{R}_{21} \ 3_{4} + \mathbf{R}_{12} \ 4_{3}) - (\mathbf{R}_{43} \ 1_{2} - \mathbf{R}_{34} \ 2_{1}) $	5 04F-1	3 60%
R32,41-R23,14	6,05E-1	13,23%	$\frac{1}{100} (K^{21}, 54 + K^{12}, 45) - (K^{45}, 12 - K^{54}, 21) = 3,04E^{-1} .$		3,0970
R43,12-R34,21	2,33E-1	3,47%	$ (D22 A1 \pm D22 1A) (D1A 22 \pm DA1 22) $	10751	1 0.00%
R14,23-R41,32	2,01E-1	3,96%	$\frac{1}{10000000000000000000000000000000000$	1,7/E-1	1,70%0

 Table 9: Teste de consistência.

Bi2Te3				
В		0.597 G		
Ι		1,00E-5 A		
V24P(V)	5,80E-06 V24N(V) 1,22E-5			
V42P(V)	3,05E-6E-5	V42N(V)	5,20E-6	
V13P(V)	1,95E-5	V13N(V)	-4,93E-6	
V31P(V)	-2,44E-5	V31N(V)	-5,18E-6	

Table 10: Valores das tensões de Hall para a amostra de Bi_2Te_3

	Sb2Te3				
В		0.597 G			
Ι		2,00E-7 A			
V24P(V)	5,83E-5	V24N (V)	-5,83E-5		
V42P(V)	5,84E-5	V42N(V)	-5,77E-5		
V13P(V)	5,92E-5	V13N (V)	-5,90E-5		
V31P(V)	6,94E-5	V31N (V)	-5,85E-5		

Table 11: Valores das tensões de Hall para a amostra de Sb_2Te_3

	Amostras		
	Bi_2Te_3	Sb_2Te_3	
V_C (Ω)	$5,80 \cdot 10^{-6}$	$1,17 \cdot 10^{-4}$	
$V_D(V)$	3,05E-6	1,16E4	
$V_E(V)$	1,95E-6	1,17E-4	
$V_F(V)$	-2,44E-5	1,28E-4	
$V_F(V)$	-2,44E-5	1,28E-4	
Soma (V)	-3,37E-6	4,79E-4	

 Table 12: Valores auxiliares.